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1. INTRODUCTION

For the Bernstein polynomials

Bn(f, x)=C
n

k=0

Rn
k
S xk(1−x)n−k f 1k

n
2 , (1.1)

in [2] Ditzian gave an interesting direct estimate,

|Bn(f, x)−f(x)|

[ Cw2jl 1f,
j1−l(x)

`n
2 , 0 [ l [ 1, j(x)=`x(1−x), (1.2)

which unifies the classical estimate for l=0 and norm estimate for l=1.
As the inverse results, [7] obtains the Stechkin–Marchaud-type

inequalities for Bernstein polynomials as follows

w2a 1f,
1

`n
2 [Mn−1 C

n

k=1
||Bkf−f||a (0 [ a [ 2), (1.3)



where w2a(f, t)=sup{j−a(x) |D2hj(x)f(x)|: x, x±hj(x) ¥ [0, 1], 0 < h [ t},
j(x)=`x(1−x) , D2hj(x)f(x)=f(x+hj(x))−2f(x)+f(x−hj(x)) and
||f||a :=||j−af||C[0, 1]. But, this is only a norm estimate (with w2j(f, t)), the
classical estimate (with w2(f, t)) is not included.

In [3] Ditzian and Ivanov gave the strong converse inequality: for the
Bernstein operator there is a k such that

w2j 1 f,
1

`n
2 ’ ||Bnf−f||C[0, 1]+||Bknf−f||C[0, 1] (1.4)

holds, where w2j(f, t)=sup0 < h [ t ||D
2
hjf||, j(x)=`x(1−x) .

In [6], Totik extended the Ditzian–Ivanov result to a large family of
operators. Typical examples are the Bernstein, Szasz–Mirakjan, Baskakov
operators and related ones. In [5] we gave a strong converse inequality on
simultaneous approximation for Baskakov–Durrmeyer operators with
w2j(f

(2r), t). If we want to deal with w2jl(f, t), 0 [ l [ 1, it should be noted
that the above results are only for l=1.

In this paper we deal with w2jl(f, t) (0 [ l [ 1). We obtain a result that
is similar to (1.3) (Stechkin–Marchaud inequality) for the Baskakov opera-
tor. Though we also attempted to get a result(strong converse inequality) of
type (1.4), it was not successful.

For the Baskakov polynomials defined for f ¥ C[0,.) by

Vn(f, x)=C
.

k=0
f 1k
n
2 vn, k(x), vn, k(x)=R

n+k−1
k
S xk(1+x)−n−k. (1.5)

By using the method similar to [2], it is not difficult to show

|Vn(f, x)−f(x)| [Mw
2
j
l 1f, j

1−l(x)

`n
2 , 0 [ l [ 1, j(x)=`x(1+x).

(1.6)

The purpose of this paper is to prove the following Stechkin–Marchaud-
type inequalities for Baskakov polynomials,

w2jl 1f,
j1−l(x)

`n
2
a, b

[Mn−1 1 C
n

k=1
||Vkf−f||

g
0+||f||

g
0
2 , (1.7)

where w2jl(f, j
1−l(x)/`n)a, b, || · ||

g
0 will be defined in next section. It is

easy to see that our result is more extensive. It unifies the result of w2(f, t)
and w2j(f, t). As a corollary of the main result, we will give the inverse
theorem of (1.6).
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2. LEMMAS

Since we only consider the Baskakov operator from now on, let us
suppose that j(x)2=x(1+x). First, we give some notations,

C0 :={f ¥ C[0,.), f(0)=0},

C2 :={f ¥ C0, f' ¥ C[0,.)},

where C[0,.) denotes the set of bounded continuous functions.
For 0 [ c [ 2,

||f||c := sup
x ¥ [0,.)

{|j−c(x) f(x)|}=||j−cf||,

Cc :={f ¥ C0, ||f||c <.},

C2c :={f ¥ C2, ||f'||c <.}.

For 0 [ l [ 1, 0 < a < 2, 0 [ b [ 2 and (1−l) a+b [ 2,

C0l, a, b :=C(1−l) a+b, C2l, a, b :=C
2
(1−l) a+b,

||f||g0 :=||f||(1−l) a+b, ||f||g2 :=||j
2f'||(1−l) a+b.

Here, the notations ||f||g0 and ||f||g2 are related to a, b and l. For the sake of
brevity we suppress in part the parameters a, b and l. Our modulus of
smoothness is given by

w2jl(f, t)a, b := sup
0 < h [ t

{|j (l−1) a−b(x) D2hjlf(x)|, x±hj
l(x) \ 0},

D2hf(x) :=f(x+h)−2f(x)+f(x−h),

and our K-functional by

Ka, bl (f, t) := inf
g ¥ C2l, a, b

{||f−g||g0+t
2 ||g||g2}.

Now, we give some lemmas.

Lemma 2.1. For f ¥ Cc, 0 [ c [ 2, one has

||j2V'nf||c [M0n ||f||c, (2.1)

||j2V'nf||2 [M0n2− c/2 ||f||c. (2.2)
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Moreover, if f ¥ C2, then

||j2V'nf||c [
n+1
n
||j2f'||c+24nc/2−1 ||j2f'||2, (2.3)

||j2V'nf||2 [
n+1
n
||j2f'||2. (2.4)

Proof. To prove (2.1) we set En=[
A
n ,.), where A > 0 is a fixed

number.

(i) If x ¥ Ecn, without loss of generality, we may assume j2(x) < 1
n .

Using the representation of V'n (f, x) (cf. [4, p. 125]), we write

|j2− c(x) V'n (f, x)|

=:j2− c(x) n(n+1) C
.

k=0
vn+2, k(x)D

2
1/n f 1

k
n
2:

[ 2n1+c/2 :C
.

k=0
vn+2, k(x) 1f 1

k+2
n
2−2f 1k+1

n
2+f 1k

n
22:

[ 2n1+c/2 ||f||c 1 C
.

k=0
vn+2, k(x) jc 1

k+2
n
2+2 C

.

k=0
vn+2, k(x) jc 1

k+1
n
2

+C
.

k=0
vn+2, k(x) jc 1

k
n
22 ,

where D2hf(t)=f(t+2h)−2f(t+h)+f(t). We only estimate the first
term. Estimates of the other terms are similar. By the Hölder inequality, we
have

C
.

k=0
vn+2, k(x) jc 1

k+2
n
2[ 1 C

.

k=0
vn+2, k(x) j2 1

k+2
n
22c/2 ·1 C

.

k=0
vn+2, k(x)2

1−c/2

=1 C
.

k=1
vn+2, k(x) j2 1

k+2
n
2+vn+2, 0(x) j2 1

2
n
22c/2

[M1
1j2(x)+1

n
2c/2

[M2n−c/2.

This leads to (2.1).
(ii) If x ¥ En, using (cf [4, p. 127])

V'n (f)=(x(1+x))
−2 C

2

i=0
QVi (x, n) n

i C
.

k=0
vn, k(x) :

k
n
−x :

i

f 1k
n
2
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and

|(x(1+x))−2 QVi (x, n) n
i| [ C 1 n

x(1+x)
21+i/2,

we have

|j2− c(x) V'n (f, x)| [ C
2

i=0

:j−c(x) n 1 n
1/2

j(x)
2 i C

.

k=0
vn, k(x) :

k
n
−x :

i

f 1k
n
2:

[ C
2

i=0
n ||f||c :j−c(x) 1

n1/2

j(x)
2 i C

.

k=0
vn, k(x) :

k
n
−x :

i

jc 1k
n
2: .

(2.5)
By the Hölder inequality,

C
.

k=0
vn, k(x) :

k
n
−x :

i

jc 1k
n
2

[ 1 C
.

k=0
vn, k(x) j2 1

k
n
22c/2 1 C

.

k=0
vn, k(x) :

k
n
−x :

i
1− c/221− c/2. (2.6)

Let the integer m satisfy 2m > i
1− c/2 . We use the Hölder inequality and

Lemma 9.4.4 of [4] to obtain

1 C
.

k=0
vn, k(x) :

k
n
−x :

i
1− c/221− c/2

[ 1 C
.

k=0
vn, k(x) :

k
n
−x :

2m2
i

2m(1− c/2) (1− c/2) 1 C
.

k=0
vn, k(x)2

(1− i
2m(1− c/2)) (1− c/2)

=1 C
.

k=0
vn, k(x) :

k
n
−x :

2m2
i
2m

[ C1 1
j(x)
n1/2
2 i. (2.7)

On the other hand,

1 C
.

k=0
vn, k(x) j2 1

k
n
22c/2=1n+1

n
j2(x) C

.

k=0
vn+2, k(x)2

c/2

=1n+1
n
2c/2jc(x) [ 2jc(x). (2.8)
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Combining (2.5), (2.6), (2.7) and (2.8), we obtain (2.1) .
The proof of (2.2) is similar to that of (2.1). Next we prove (2.3). We

have

j2(x) V'n (f, x)=n(n+1) j
2(x) C

.

k=0
vn+2, k(x) D

2
1/nf 1

k+1
n
2

=n2 C
.

k=1
j2 1k

n
2 vn, k(x) D21/nf 1

k
n
2 . (2.9)

Let y \ 1/n and |u| [ 1/n. Then

n+1
n
j2(y+u)+

12
n
−j2(y)=

y
n
+
u
n
+
y2

n
+
u2

n
+
2yu
n
+u+2yu+u2+

12
n
.

If 0 [ u [ 1/n, the representation is obviously nonnegative.
Otherwise, it is equal to (0 [ u [ 1/n)

y
n
−
u
n
+
y2

n
+
u2

n
−
2yu
n
−u−2yu+u2+

12
n
\
y2

n
+
12
n
−1 1
n2
+
2y
n2
+
1
n
+
y
n
2

\ 0.

Therefore,

j2(y) [
n+1
n
j2(y+u)+

12
n
.

Since the function t1− c/2(0 [ c [ 2) is subadditive,

j2− c(y) [ 1n+1
n
21− c/2j2− c(y+u)+12nc/2−1.

Therefore, for f ¥ C2,

j2− c(y) |D21/nf(y)|

[ j2− c(y) F
1/2n

−1/2n
F
1/2n

−1/2n
|f'(y+s+t)| ds dt

[ 1n+1
n
21− c/2 F 1/2n

−1/2n
F
1/2n

−1/2n
j2− c(y+s+t) |f'(y+s+t)| ds dt

+12nc/2−1 ·F
1/2n

−1/2n
F
1/2n

−1/2n
|f'(y+s+t)| ds dt

[ n−2 51n+1
n
21− c/2 ||j2f'||c+12nc/2−1 ||j2f'||26 . (2.10)
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On the other hand, by the Hölder inequality and (2.8),

C
.

k=0
jc 1k

n
2 vn, k(x) [ 1 C

.

k=0
j2 1k

n
2 vn, k(x)2

c/2

=1n+1
n
2c/2jc(x), (2.11)

thus, in view of (2.9), (2.10), and (2.11), we have

j2− c(x) |V'n (f, x)| [ n
2j−c(x) C

.

k=1
j2− c 1k

n
2 :D21/nf 1

k
n
2: jc 1k

n
2 vn, k(x)

[ 1n+1
n
2c/2 11n+1

n
21− c/2 ||j2f'||c+12nc/2−1 ||j2f'||2 2

[
n+1
n
||j2f'||c+24nc/2−1 ||j2f'||2.

Finally, we prove (2.4). We write

|V'n (f, x)|=n(n+1) C
.

k=0
vn+2, k(x) :D21/nf 1

k
n
2:

[ n(n+1) C
.

k=0
vn+2, k(x) F

1/n

0
F
1/n

0

: f' 1k
n
+s+t2: ds dt

[
n(n+1)
n2

||f'|| C
.

k=0
vn+2, k(x)

=
n+1
n
||f'||.

Therefore,

||j2V'nf||2 [
n+1
n
||j2f'||2.

The proof is complete.

Lemma 2.2 (cf. [7]). Suppose that for nonnegative sequences {sn}, {yn}
with s1=0, the inequality (p > 0)

sn [ 1
k
n
2p sk+yk (1 [ k [ n) (2.12)
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holds for n ¥N, then

sn [Mpn−p C
n

k=1
kp−1yk. (2.13)

Lemma 2.3 (cf. [7]). Suppose that for nonnegative sequences {mn}, {nn},
{kn} with m1=0 and n1=0, the inequalities (0 < r < s, 1 [ k [ n)

mn [ 1
k
n
2 r mk+nk+kk (2.14)

and

nn [ 1
k
n
2 s nk+kk (2.15)

hold for n ¥N. Then

mn [Mr, sn−r C
n

k=1
k r−1kk. (2.16)

By Lemma 2.1, 2.2, and 2.3, we can obtain the following lemma.

Lemma 2.4. For f ¥ Cc, 0 [ c [ 2, we have

||j2V'nf||c [M 1 C
n

k=1
||Vkf−f||c+||f||c 2 . (2.17)

Proof. If 0 [ c < 2, let (n ¥N, 1 [ m [ n)

mm=m−1 ||j2(V
'

m−V
'

1 ) f||c,

nm=24mc/2−2 ||j2(V
'

m−V
'

1 ) f||2

and

km=72M0(||Vmf−f||c+n−1 ||f||c).

By (2.1), (2.2) and (2.3), we have
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mn [ n−1 ||j2V
'

nf||c+n
−1 ||j2V'1f||c

[ n−1 ||j2V'nVkf||c+n
−1 ||j2V'n (Vkf−f)||c+n

−1M0 ||f||c

[ n−1 1n+1
n
||j2V'kf||c+24n

c/2−1 ||j2V'kf||2 2

+M0 ||Vkf−f||c+M0n−1 ||f||c

[ n−1 ||j2V'kf||c+n
−2 ||j2V'kf||c+24n

c/2−2 ||j2V'kf||2

+M0(||Vkf−f||c+n−1 ||f||c)

[ n−1 ||j2(V'k −V
'

1 ) f||c+n
−1 ||j2V'1f||c+

M0k
n2

||f||c

+24nc/2−2 ||j2(V'k −V
'

1 ) f||2+24n
c/2−2 ||j2V'1f||2

+M0(||Vkf−f||c+n−1 ||f||c)

[ n−1 ||j2(V'k −V
'

1 ) f||c+24n
c/2−2 ||j2(V'k −V

'

1 ) f||2

+26M0n−1 ||f||c+M0(||Vkf−f||c+n−1 ||f||c)

[
k
n
mk+1

k
n
22− c/2 nk+27M0(||Vkf−f||c+n−1 ||f||c)

[
k
n
mk+nk+kk.

Hence, (2.14) holds for r=1. On the other hand, by (2.2) and (2.4),

nn [ 24nc/2−2 ||j2V
'

nf||2+24n
c/2−2 ||j2V'1f||2

[ 24nc/2−2 ||j2V'nVkf||2+24n
c/2−2 ||j2V'n (Vkf−f)||2+24M0n−1 ||f||c

[ 24nc/2−2
n+1
n
||j2V'kf||2+24M0 ||Vkf−f||c+24M0n−1 ||f||c

[ 24nc/2−2 ||j2V'kf||2+24n
c/2−2n−1 ||j2V'kf||2+24M0(||Vkf−f||c+n−1 ||f||c)

[ 24nc/2−2 ||j2(V'k −V
'

1 ) f||2+24n
c/2−2 ||j2V'1f||2

+24M0
1k
n
22−c/2n−1 ||f||c+24M0(||Vkf−f||c+n−1 ||f||c)

[ 24nc/2−2 ||j2(V'k −V
'

1 ) f||2+48M0n−1 ||f||c+24M0(||Vkf−f||c+n−1 ||f||c)

[ 1k
n
22−c/2 nk+kk,
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and (2.15) holds for s=2−c/2. Therefore Lemma 2.3 implies

||j2(V'n −V
'

1 ) f||c [M1 C
n

k=1
(||Vkf−f||c+n−1 ||f||c)

=M1
1 C
n

k=1
||Vkf−f||c+||f||c 2.

Therefore,

||j2V'nf||c [M1
1 C
n

k=1
||Vkf−f||c+||f||c 2+M0 ||f||c

=M 1 C
n

k=1
||Vkf−f||c+||f||c 2.

Concerning the case c=2, we apply Lemma 2.2 with p=1 to (1 [m [ n)

sm=m−1 ||j2(V
'

m−V
'

1 ) f||2 and ym=3M0(||Vmf−f||2+n−1 ||f||2),

which implies (2.17) analogously (cf (2.2), (2.4)).
To establish our main theorem, we need the following lemma.

Lemma 2.5. If 0 [ c [ 2, t > 0, x \ t and either of

(i) 0 < t < 1, (ii) x \ 2t

is satisfied, then we have

F
t/2

−t/2
F
t/2

−t/2
jc(x+u+v) du dv [Mt2j−c(x).

Proof. If condition (i) is satisfied, then for c=2, it is known (cf. [1]).
For 0 [ c < 2, we use the Hölder inequality

F
t/2

−t/2
F
t/2

−t/2
j−c(x+u+v) du dv

[ 1F t/2
−t/2

F
t/2

−t/2
j−2(x+u+v) du dv2

c/2 1F t/2
−t/2

F
t/2

−t/2
du dv2

1−c/2

[M(t2j−2(x))c/2 t2(1−c/2)

[Mt2j−c(x).
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If condition (ii) is satisfied, then x−t \ 1
2 x. Therefore,

F
t/2

−t/2
F
t/2

−t/2
j−c(x+u+v) du dv [ t2j−c(x−t) [ t2j−c 1x

2
2[Mt2j−c(x).

3. MAIN THEOREMS AND COROLLARIES

Now, we prove the main theorems.

Theorem 3.1. Suppose f ¥ C0l, a, b. Then one has

Ka, bl 1f,
1
n
2[ Cn−1 1 C

n

k=1
||Vkf−f||

g
0+||f||

g
0
2. (3.1)

Proof. For n \ 2, there exists l ¥N, such that n/2 [ l [ n, and

||Vlf−f||
g
0 [ ||Vkf−f||

g
0
1n
2
[ k [ n2.

On the other hand, Lemma 2.4 implies (where we set c=(1−l) a+b)

||V'nf||
g
2 [M 1 C

n

k=1
||Vkf−f||

g
0+||f||

g
0
2.

Therefore, using the definition of Ka, bl (f,
1
n ), we have

Ka, bl 1f,
1
n
2[ ||Vlf−f||g0+

1
n
||Vlf||

g
2

[
2
n

C
n

k=n/2
||Vkf−f||

g
0+
1
n
M 1 C

l

k=1
||Vkf−f||

g
0+||f||

g
0
2

[
2
n
1 C
n

k=1
||Vkf−f||

g
0+||f||

g
0
2+1
n
M 1 C

n

k=1
||Vkf−f||

g
0+||f||

g
0
2

[ C
1
n
1 C
n

k=1
||Vkf−f||

g
0+||f||

g
0
2.

The proof is complete.

Remark. Wickeren’s Proof in [7] is followed for Theorem 3.1, and from
(3.1) we can deduce the following theorem.
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Theorem 3.2. Suppose f ¥ C0l, a, b. Then one has

w2jl 1f,
j1−l(x)

`n
2
a, b

[ C
1
n
1 C
n

k=1
||Vkf−f||

g
0+||f||

g
0
2. (3.2)

Proof. According to the definition of Ka, bl (f,
1
n ), there exists g ¥ C2l, a, b

such that

||f−g||g0+
1
n
||g||g2 [ 2K

a, b
l
1f, 1

n
2. (3.3)

On the other hand,

|D2hjlf(x)| [ |D
2
hjl(f−g)(x)|+|D

2
hjlg(x)|. (3.4)

For the first term of (3.4), since ja(1−l)+b(x) is a monotone increasing
function, and x \ hjl(x),

|D2hjl(f−g)(x)| [ ||f−g||
g
0 (j

a(1−l)+b(x+hjl(x))+2ja(1−l)+b(x)

+ja(1−l)+b(x−hjl(x))

[ ||f−g||g0 (j
a(1−l)+b(2x)+3ja(1−l)+b(x))

[ 7ja(1−l)+b(x) ||f−g||g0 .

For the second term of (3.4), we have

|D2hjl(x)g(x)|=: F
hjl(x)/2

−hjl(x)/2
F
hjl(x)/2

−hjl(x)/2
g'(x+m+n) dm dn :

[ ||g||g2 · : F
hjl(x)/2

−hjl(x)/2
F
hjl(x)/2

−hjl(x)/2
j−2+(1−l) a+b(x+m+n) dm dn :.

Set t=hjl(x). Since x \ hjl(x), if x < 1, one has 0 < t < 1, which satisfies
(i) of Lemma 2.5.

If x \ 1, let h [ j1−l(x)/`n (n \ 8). Then

t [
j1−l(x)

`n
jl(x)=

j(x)

`n
[ =2

n
x [

x
2
,

which satisfies (ii) of Lemma 2.5. Therefore, suppose h [ j1−l(x)/
`n (n \ 8). By Lemma 2.5, we have

F
hjl(x)/2

−hjl(x)/2
F
hjl(x)/2

−hjl(x)/2
j−2+(1−l) a+b(x+m+n) dm dn [M(hjl(x))2 j−2+(1−l) a+b(x)

[M
1
n
j(1−l) a+b(x).
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Thus, if h [ j1−l(x)/`n (n \ 8), we have

|D2jlf(x)| [M1j
a(1−l)+b(x) 1 ||f−g||go+

1
n
||g||g2 2.

Therefore,

w2jl 1f,
j1−l(x)

`n
2
a, b

[ 2M1K
a, b
l
1f, 1

n
2[ C 1

n
1 C
n

k=1
||Vkf−f||

g
0+||f||

g
0
2.

However, if n [ 8, the result is obvious. This completes the proof of this
theorem.

Now, we give some corollaries.

Corollary 3.1. Let l=1, 0 [ b [ 2, then for f ¥ Cb

w2j 1f,
1

`n
2
b

[ C
1
n
1 C
n

k=1
||j−b(Vkf−f)||+||j−bf||2.

This result corresponds to the result of [7] with b=0 which is the result
of Theorem 9.3.6 in [4] for s=1.

Corollary 3.2. Let l=0, 0 [ a+b=c [ 2. Then for f ¥ Cc

w2 1f, j(x)
`n
2
c

[ C
1
n
1 C
n

k=1
||j−c(Vkf−f)||+||j−cf||2.

This is a result for the classical modulus.

Corollary 3.3. For 0 < a < 2, 0 [ b [ 2, we have the following inverse
results

|(Vnf−f)(x)|=O 11
j(x)

`n
2a2

2 w2(f, t)=O(ta), (3.5)

|(Vnf−f)(x)|=O 11
1

`n
2a2

2 w2j(f, t)=O(t
a), (3.6)
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j−b(x) |(Vnf−f)(x)| [Mn−a/2

2 j−b(x) |f(x+t)−2f(x)+f(x−t)| [M
ta

ja(x)
, (3.7)

|(Vnf−f)(x)|=O 11
j1−l(x)

`n
2a2

2 w2jl(f, t)=O(t
a). (3.8)

Proof. Since the proof of (3.5), (3.6), and (3.7) are similar, here we only
prove (3.7).

Applying Corollary 3.2, let c=b, j(x)/`n+1 < t [ j(x)/`n . Then

j−b(x) |f(x+t)−2f(x)+f(x−t)|

[ w2(f, t)b [ w2 1f,
j(x)

`n
2
b

[ C 1n−1 C
n

k=1
||j−b(Vkf−f)||+(n−1 ||j−bf||2

[ C1n−1 C
n

k=1
k−a/2+C2n−1

[ C3n−a/2 [M
ta

ja(x)
.

Last, we prove (3.8). In Theorem 3.2, let b=0; thus

||Vnf−f||
g
0=sup

x
{j(l−1) a(x) |(Vnf−f)(x)|}

[Mn−a/2.

Let j1−l(x)/`n+1 < t [ j1−l(x)/`n . Then (h [ t)

ja(l−1)(x) |f(x+hjl(x))−2f(x)+f(x−hjl(x))|

[ Cn−1 1 C
n

k=1
Mk−a/2+||f||g0 2

[M1n−a/2.
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Therefore,

|D2hjlf(x)| [M1
1j1−l(x)
`n
2a [M2ta.

This is

w2jl(f, t) [M2ta.

The proof is complete.

Remark. (1) Relation (3.8) is the inverse theorem of (1.6).
(2) Since Vn(f, x) preserves constants, the condition f(0)=0 can be

omitted in the results.
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