Stechkin–Marchaud-Type Inequalities for Baskakov Polynomials¹

Shunsheng Guo, Hongzhi Tong, and Gengsheng Zhang

Department of Mathematics, Hebei Teachers University, Shijiazhuang 050016, People's Republic of China

Communicated by Zeev Ditzian

Received May 15, 1998; accepted in revised form September 12, 2001

E. Van Wickeren (1986, *Constr. Approx.* 2, 331–337) shows some Stechkin–Marchaud-type inequalities in connection with Bernstein polynomials. In this paper, we introduce $\omega_{\varphi^{\lambda}}^{2}(f, t)_{\alpha,\beta}$, and give the Stechkin–Marchaud-type inequalities for Baskakov polynomials. © 2002 Elsevier Science (USA)

Key Words: Baskakov polynomials; modulus of smoothness; Stechkin–Marchaud-type inequalities.

1. INTRODUCTION

For the Bernstein polynomials

$$B_n(f,x) = \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} f\left(\frac{k}{n}\right),$$
 (1.1)

in [2] Ditzian gave an interesting direct estimate,

$$|B_n(f,x) - f(x)| \leq C\omega_{\varphi^{\lambda}}^2 \left(f, \frac{\varphi^{1-\lambda}(x)}{\sqrt{n}} \right), \qquad 0 \leq \lambda \leq 1, \, \varphi(x) = \sqrt{x(1-x)}, \qquad (1.2)$$

which unifies the classical estimate for $\lambda = 0$ and norm estimate for $\lambda = 1$.

As the inverse results, [7] obtains the Stechkin–Marchaud-type inequalities for Bernstein polynomials as follows

$$\omega_{\alpha}^{2}\left(f,\frac{1}{\sqrt{n}}\right) \leq Mn^{-1}\sum_{k=1}^{n} \|B_{k}f-f\|_{\alpha} \qquad (0 \leq \alpha \leq 2), \qquad (1.3)$$

¹ Supported by NSF of Hebei province (101090).

0021-9045/02 \$35.00 © 2002 Elsevier Science (USA) All rights reserved. where $\omega_{\alpha}^{2}(f,t) = \sup\{\varphi^{-\alpha}(x) | \Delta_{h\varphi(x)}^{2}f(x)|: x, x \pm h\varphi(x) \in [0,1], 0 < h \le t\},\ \varphi(x) = \sqrt{x(1-x)}, \ \Delta_{h\varphi(x)}^{2}f(x) = f(x+h\varphi(x))-2f(x)+f(x-h\varphi(x))$ and $\|f\|_{\alpha} := \|\varphi^{-\alpha}f\|_{C[0,1]}.$ But, this is only a norm estimate (with $\omega_{\varphi}^{2}(f,t)$), the classical estimate (with $\omega^{2}(f,t)$) is not included.

In [3] Ditzian and Ivanov gave the strong converse inequality: for the Bernstein operator there is a k such that

$$\omega_{\varphi}^{2}\left(f,\frac{1}{\sqrt{n}}\right) \sim \|B_{n}f - f\|_{C[0,1]} + \|B_{kn}f - f\|_{C[0,1]}$$
(1.4)

holds, where $\omega_{\varphi}^2(f, t) = \sup_{0 < h \leq t} \|\varDelta_{h\varphi}^2 f\|, \varphi(x) = \sqrt{x(1-x)}$.

In [6], Totik extended the Ditzian–Ivanov result to a large family of operators. Typical examples are the Bernstein, Szasz–Mirakjan, Baskakov operators and related ones. In [5] we gave a strong converse inequality on simultaneous approximation for Baskakov–Durrmeyer operators with $\omega_{\varphi}^{2}(f^{(2r)}, t)$. If we want to deal with $\omega_{\varphi}^{2}(f, t), 0 \leq \lambda \leq 1$, it should be noted that the above results are only for $\lambda = 1$.

In this paper we deal with $\omega_{\phi^{\lambda}}^{2}(f, t)$ $(0 \le \lambda \le 1)$. We obtain a result that is similar to (1.3) (Stechkin–Marchaud inequality) for the Baskakov operator. Though we also attempted to get a result(strong converse inequality) of type (1.4), it was not successful.

For the Baskakov polynomials defined for $f \in C[0, \infty)$ by

$$V_n(f,x) = \sum_{k=0}^{\infty} f\left(\frac{k}{n}\right) v_{n,k}(x), \qquad v_{n,k}(x) = \binom{n+k-1}{k} x^k (1+x)^{-n-k}.$$
(1.5)

By using the method similar to [2], it is not difficult to show

$$|V_n(f,x) - f(x)| \le M\omega_{\varphi^{\lambda}}^2 \left(f, \frac{\varphi^{1-\lambda}(x)}{\sqrt{n}} \right), \qquad 0 \le \lambda \le 1, \, \varphi(x) = \sqrt{x(1+x)}.$$
(1.6)

The purpose of this paper is to prove the following Stechkin–Marchaudtype inequalities for Baskakov polynomials,

$$\omega_{\varphi^{\lambda}}^{2}\left(f,\frac{\varphi^{1-\lambda}(x)}{\sqrt{n}}\right)_{\alpha,\beta} \leq Mn^{-1}\left(\sum_{k=1}^{n}\|V_{k}f-f\|_{0}^{*}+\|f\|_{0}^{*}\right), \quad (1.7)$$

where $\omega_{\varphi^{\lambda}}^{2}(f, \varphi^{1-\lambda}(x)/\sqrt{n})_{\alpha,\beta}$, $\|\cdot\|_{0}^{*}$ will be defined in next section. It is easy to see that our result is more extensive. It unifies the result of $\omega^{2}(f, t)$ and $\omega_{\varphi}^{2}(f, t)$. As a corollary of the main result, we will give the inverse theorem of (1.6).

2. LEMMAS

Since we only consider the Baskakov operator from now on, let us suppose that $\varphi(x)^2 = x(1+x)$. First, we give some notations,

$$C_0 := \{ f \in C[0, \infty), f(0) = 0 \},\$$

$$C^2 := \{ f \in C_0, f'' \in C[0, \infty) \},\$$

where $C[0, \infty)$ denotes the set of bounded continuous functions. For $0 \le \gamma \le 2$,

$$\begin{split} \|f\|_{\gamma} &:= \sup_{x \in [0, \infty)} \left\{ |\varphi^{-\gamma}(x) f(x)| \right\} = \|\varphi^{-\gamma} f\|, \\ C_{\gamma} &:= \left\{ f \in C_{0}, \|f\|_{\gamma} < \infty \right\}, \\ C_{\gamma}^{2} &:= \left\{ f \in C^{2}, \|f''\|_{\gamma} < \infty \right\}. \end{split}$$

For $0 \le \lambda \le 1$, $0 < \alpha < 2$, $0 \le \beta \le 2$ and $(1 - \lambda) \alpha + \beta \le 2$,

$$C^{0}_{\lambda,\alpha,\beta} := C_{(1-\lambda)\alpha+\beta}, \qquad C^{2}_{\lambda,\alpha,\beta} := C^{2}_{(1-\lambda)\alpha+\beta},$$
$$\|f\|^{*}_{0} := \|f\|_{(1-\lambda)\alpha+\beta}, \qquad \|f\|^{*}_{2} := \|\varphi^{2}f''\|_{(1-\lambda)\alpha+\beta}$$

Here, the notations $||f||_0^*$ and $||f||_2^*$ are related to α , β and λ . For the sake of brevity we suppress in part the parameters α , β and λ . Our modulus of smoothness is given by

$$\omega_{\varphi^{\lambda}}^{2}(f,t)_{\alpha,\beta} := \sup_{0 < h \leq t} \{ |\varphi^{(\lambda-1)\alpha-\beta}(x) \Delta_{h\varphi^{\lambda}}^{2}f(x)|, x \pm h\varphi^{\lambda}(x) \ge 0 \},$$
$$\Delta_{h}^{2}f(x) := f(x+h) - 2f(x) + f(x-h),$$

and our K-functional by

$$K_{\lambda}^{\alpha,\beta}(f,t) := \inf_{g \in C_{\lambda,\alpha,\beta}^{2}} \{ \|f - g\|_{0}^{*} + t^{2} \|g\|_{2}^{*} \}.$$

Now, we give some lemmas.

LEMMA 2.1. For $f \in C_{\gamma}$, $0 \leq \gamma \leq 2$, one has

$$\|\varphi^{2}V_{n}''f\|_{\gamma} \leq M_{0}n \|f\|_{\gamma}, \qquad (2.1)$$

$$\|\varphi^{2}V_{n}''f\|_{2} \leq M_{0}n^{2-\gamma/2} \|f\|_{\gamma}.$$
(2.2)

Moreover, if $f \in C^2$, then

$$\|\varphi^{2}V_{n}''f\|_{\gamma} \leq \frac{n+1}{n} \|\varphi^{2}f''\|_{\gamma} + 24n^{\gamma/2-1} \|\varphi^{2}f''\|_{2}, \qquad (2.3)$$

$$\|\varphi^{2}V_{n}''f\|_{2} \leq \frac{n+1}{n} \|\varphi^{2}f''\|_{2}.$$
(2.4)

Proof. To prove (2.1) we set $E_n = [\frac{A}{n}, \infty)$, where A > 0 is a fixed number.

(i) If $x \in E_n^c$, without loss of generality, we may assume $\varphi^2(x) < \frac{1}{n}$. Using the representation of $V_n''(f, x)$ (cf. [4, p. 125]), we write

$$\begin{split} |\varphi^{2-\gamma}(x) \, V_n^n(f, x)| \\ &= \left| \varphi^{2-\gamma}(x) \, n(n+1) \sum_{k=0}^{\infty} \, v_{n+2,k}(x) \Delta_{1/n}^2 \, f\left(\frac{k}{n}\right) \right| \\ &\leq 2n^{1+\gamma/2} \left| \sum_{k=0}^{\infty} \, v_{n+2,k}(x) \left(f\left(\frac{k+2}{n}\right) - 2f\left(\frac{k+1}{n}\right) + f\left(\frac{k}{n}\right) \right) \right| \\ &\leq 2n^{1+\gamma/2} \, \|f\|_{\gamma} \left(\sum_{k=0}^{\infty} \, v_{n+2,k}(x) \, \varphi^{\gamma}\left(\frac{k+2}{n}\right) + 2 \sum_{k=0}^{\infty} \, v_{n+2,k}(x) \, \varphi^{\gamma}\left(\frac{k+1}{n}\right) \right) \\ &+ \sum_{k=0}^{\infty} \, v_{n+2,k}(x) \, \varphi^{\gamma}\left(\frac{k}{n}\right) \bigg), \end{split}$$

where $\Delta_h^2 f(t) = f(t+2h) - 2f(t+h) + f(t)$. We only estimate the first term. Estimates of the other terms are similar. By the Hölder inequality, we have

$$\begin{split} \sum_{k=0}^{\infty} v_{n+2,k}(x) \, \varphi^{\gamma} \left(\frac{k+2}{n} \right) &\leqslant \left(\sum_{k=0}^{\infty} v_{n+2,k}(x) \, \varphi^{2} \left(\frac{k+2}{n} \right) \right)^{\gamma/2} \cdot \left(\sum_{k=0}^{\infty} v_{n+2,k}(x) \right)^{1-\gamma/2} \\ &= \left(\sum_{k=1}^{\infty} v_{n+2,k}(x) \, \varphi^{2} \left(\frac{k+2}{n} \right) + v_{n+2,0}(x) \, \varphi^{2} \left(\frac{2}{n} \right) \right)^{\gamma/2} \\ &\leqslant M_{1} \left(\varphi^{2}(x) + \frac{1}{n} \right)^{\gamma/2} \\ &\leqslant M_{2} n^{-\gamma/2}. \end{split}$$

This leads to (2.1).

(ii) If $x \in E_n$, using (cf [4, p. 127])

$$V_n''(f) = (x(1+x))^{-2} \sum_{i=0}^2 Q_i^V(x,n) n^i \sum_{k=0}^\infty v_{n,k}(x) \left| \frac{k}{n} - x \right|^i f\left(\frac{k}{n}\right)$$

and

$$|(x(1+x))^{-2} Q_i^V(x,n) n^i| \leq C \left(\frac{n}{x(1+x)}\right)^{1+i/2},$$

we have

$$\begin{aligned} |\varphi^{2-\gamma}(x) V_n''(f,x)| &\leq \sum_{i=0}^2 \left| \varphi^{-\gamma}(x) n\left(\frac{n^{1/2}}{\varphi(x)}\right)^i \sum_{k=0}^\infty v_{n,k}(x) \left| \frac{k}{n} - x \right|^i f\left(\frac{k}{n}\right) \right| \\ &\leq \sum_{i=0}^2 n \left\| f \right\|_{\gamma} \left| \varphi^{-\gamma}(x) \left(\frac{n^{1/2}}{\varphi(x)}\right)^i \sum_{k=0}^\infty v_{n,k}(x) \left| \frac{k}{n} - x \right|^i \varphi^{\gamma}\left(\frac{k}{n}\right) \right|. \end{aligned}$$

$$(2.5)$$

By the Hölder inequality,

$$\sum_{k=0}^{\infty} v_{n,k}(x) \left| \frac{k}{n} - x \right|^{i} \varphi^{\gamma} \left(\frac{k}{n} \right)$$

$$\leq \left(\sum_{k=0}^{\infty} v_{n,k}(x) \varphi^{2} \left(\frac{k}{n} \right) \right)^{\gamma/2} \left(\sum_{k=0}^{\infty} v_{n,k}(x) \left| \frac{k}{n} - x \right|^{\frac{i}{1-\gamma/2}} \right)^{1-\gamma/2}. \quad (2.6)$$

Let the integer *m* satisfy $2m > \frac{i}{1-\gamma/2}$. We use the Hölder inequality and Lemma 9.4.4 of [4] to obtain

$$\left(\sum_{k=0}^{\infty} v_{n,k}(x) \left| \frac{k}{n} - x \right|^{\frac{i}{1-\gamma/2}} \right)^{1-\gamma/2} \\ \leq \left(\sum_{k=0}^{\infty} v_{n,k}(x) \left| \frac{k}{n} - x \right|^{2m} \right)^{\frac{i}{2m(1-\gamma/2)}(1-\gamma/2)} \left(\sum_{k=0}^{\infty} v_{n,k}(x) \right)^{\left(1 - \frac{i}{2m(1-\gamma/2)}\right)(1-\gamma/2)} \\ = \left(\sum_{k=0}^{\infty} v_{n,k}(x) \left| \frac{k}{n} - x \right|^{2m} \right)^{\frac{i}{2m}} \\ \leq C_1 \left(\frac{\varphi(x)}{n^{1/2}} \right)^i.$$
(2.7)

On the other hand,

$$\left(\sum_{k=0}^{\infty} v_{n,k}(x) \,\varphi^2\left(\frac{k}{n}\right)\right)^{\gamma/2} = \left(\frac{n+1}{n} \,\varphi^2(x) \sum_{k=0}^{\infty} v_{n+2,k}(x)\right)^{\gamma/2}$$
$$= \left(\frac{n+1}{n}\right)^{\gamma/2} \varphi^\gamma(x) \le 2\varphi^\gamma(x). \tag{2.8}$$

Combining (2.5), (2.6), (2.7) and (2.8), we obtain (2.1).

The proof of (2.2) is similar to that of (2.1). Next we prove (2.3). We have

$$\varphi^{2}(x) V_{n}''(f, x) = n(n+1) \varphi^{2}(x) \sum_{k=0}^{\infty} v_{n+2,k}(x) \Delta_{1/n}^{2} f\left(\frac{k+1}{n}\right)$$
$$= n^{2} \sum_{k=1}^{\infty} \varphi^{2}\left(\frac{k}{n}\right) v_{n,k}(x) \Delta_{1/n}^{2} f\left(\frac{k}{n}\right).$$
(2.9)

Let $y \ge 1/n$ and $|u| \le 1/n$. Then

$$\frac{n+1}{n}\varphi^2(y+u) + \frac{12}{n} - \varphi^2(y) = \frac{y}{n} + \frac{u}{n} + \frac{y^2}{n} + \frac{u^2}{n} + \frac{2yu}{n} + u + 2yu + u^2 + \frac{12}{n}.$$

If $0 \le u \le 1/n$, the representation is obviously nonnegative. Otherwise, it is equal to $(0 \le u \le 1/n)$

$$\frac{y}{n} - \frac{u}{n} + \frac{y^2}{n} + \frac{u^2}{n} - \frac{2yu}{n} - u - 2yu + u^2 + \frac{12}{n} \ge \frac{y^2}{n} + \frac{12}{n} - \left(\frac{1}{n^2} + \frac{2y}{n^2} + \frac{1}{n} + \frac{y}{n}\right) \ge 0.$$

Therefore,

$$\varphi^2(y) \leqslant \frac{n+1}{n} \varphi^2(y+u) + \frac{12}{n}.$$

Since the function $t^{1-\gamma/2} (0 \le \gamma \le 2)$ is subadditive,

$$\varphi^{2-\gamma}(y) \leq \left(\frac{n+1}{n}\right)^{1-\gamma/2} \varphi^{2-\gamma}(y+u) + 12n^{\gamma/2-1}.$$

Therefore, for $f \in C^2$,

$$\begin{split} \varphi^{2-\gamma}(y) \left| \mathcal{\Delta}_{1/n}^{2} f(y) \right| \\ &\leqslant \varphi^{2-\gamma}(y) \int_{-1/2n}^{1/2n} \int_{-1/2n}^{1/2n} \left| f''(y+s+t) \right| ds \, dt \\ &\leqslant \left(\frac{n+1}{n} \right)^{1-\gamma/2} \int_{-1/2n}^{1/2n} \int_{-1/2n}^{1/2n} \varphi^{2-\gamma}(y+s+t) \left| f''(y+s+t) \right| ds \, dt \\ &\quad + 12n^{\gamma/2-1} \cdot \int_{-1/2n}^{1/2n} \int_{-1/2n}^{1/2n} \left| f''(y+s+t) \right| ds \, dt \\ &\leqslant n^{-2} \left[\left(\frac{n+1}{n} \right)^{1-\gamma/2} \left\| \varphi^{2} f'' \right\|_{\gamma} + 12n^{\gamma/2-1} \left\| \varphi^{2} f'' \right\|_{2} \right]. \end{split}$$
(2.10)

On the other hand, by the Hölder inequality and (2.8),

$$\sum_{k=0}^{\infty} \varphi^{\gamma}\left(\frac{k}{n}\right) v_{n,k}(x) \leqslant \left(\sum_{k=0}^{\infty} \varphi^{2}\left(\frac{k}{n}\right) v_{n,k}(x)\right)^{\gamma/2} = \left(\frac{n+1}{n}\right)^{\gamma/2} \varphi^{\gamma}(x), \qquad (2.11)$$

thus, in view of (2.9), (2.10), and (2.11), we have

$$\begin{split} \varphi^{2-\gamma}(x) |V_n''(f,x)| &\leq n^2 \varphi^{-\gamma}(x) \sum_{k=1}^{\infty} \varphi^{2-\gamma} \left(\frac{k}{n}\right) \left| \Delta_{1/n}^2 f\left(\frac{k}{n}\right) \right| \varphi^{\gamma} \left(\frac{k}{n}\right) v_{n,k}(x) \\ &\leq \left(\frac{n+1}{n}\right)^{\gamma/2} \left(\left(\frac{n+1}{n}\right)^{1-\gamma/2} \|\varphi^2 f''\|_{\gamma} + 12n^{\gamma/2-1} \|\varphi^2 f''\|_2 \right) \\ &\leq \frac{n+1}{n} \|\varphi^2 f''\|_{\gamma} + 24n^{\gamma/2-1} \|\varphi^2 f''\|_2. \end{split}$$

Finally, we prove (2.4). We write

$$\begin{aligned} |V_n''(f, x)| &= n(n+1) \sum_{k=0}^{\infty} v_{n+2,k}(x) \left| \mathcal{\Delta}_{1/n}^2 f\left(\frac{k}{n}\right) \right| \\ &\leq n(n+1) \sum_{k=0}^{\infty} v_{n+2,k}(x) \int_0^{1/n} \int_0^{1/n} \left| f''\left(\frac{k}{n} + s + t\right) \right| ds \, dt \\ &\leq \frac{n(n+1)}{n^2} \| f'' \| \sum_{k=0}^{\infty} v_{n+2,k}(x) \\ &= \frac{n+1}{n} \| f'' \|. \end{aligned}$$

Therefore,

$$\|\varphi^2 V_n'' f\|_2 \leq \frac{n+1}{n} \|\varphi^2 f''\|_2.$$

The proof is complete.

LEMMA 2.2 (cf. [7]). Suppose that for nonnegative sequences $\{\sigma_n\}, \{\tau_n\}$ with $\sigma_1 = 0$, the inequality (p > 0)

$$\sigma_n \leqslant \left(\frac{k}{n}\right)^p \sigma_k + \tau_k \qquad (1 \leqslant k \leqslant n) \tag{2.12}$$

holds for $n \in N$, then

$$\sigma_n \leq M_p n^{-p} \sum_{k=1}^n k^{p-1} \tau_k.$$
 (2.13)

LEMMA 2.3 (cf. [7]). Suppose that for nonnegative sequences $\{\mu_n\}, \{\nu_n\}, \{\psi_n\}$ with $\mu_1 = 0$ and $\nu_1 = 0$, the inequalities $(0 < r < s, 1 \le k \le n)$

$$\mu_n \leqslant \left(\frac{k}{n}\right)^r \mu_k + \nu_k + \psi_k \tag{2.14}$$

and

$$v_n \leqslant \left(\frac{k}{n}\right)^s v_k + \psi_k \tag{2.15}$$

hold for $n \in N$. Then

$$\mu_n \leq M_{r,s} n^{-r} \sum_{k=1}^n k^{r-1} \psi_k.$$
(2.16)

By Lemma 2.1, 2.2, and 2.3, we can obtain the following lemma.

LEMMA 2.4. For $f \in C_{\gamma}$, $0 \leq \gamma \leq 2$, we have

$$\|\varphi^{2}V_{n}''f\|_{\gamma} \leq M\left(\sum_{k=1}^{n} \|V_{k}f - f\|_{\gamma} + \|f\|_{\gamma}\right).$$
(2.17)

Proof. If $0 \leq \gamma < 2$, let $(n \in N, 1 \leq m \leq n)$

$$\mu_{m} = m^{-1} \|\varphi^{2}(V_{m}'' - V_{1}'') f\|_{\gamma},$$

$$\nu_{m} = 24m^{\gamma/2-2} \|\varphi^{2}(V_{m}'' - V_{1}'') f\|_{2}$$

and

$$\psi_m = 72M_0(\|V_m f - f\|_{\gamma} + n^{-1} \|f\|_{\gamma}).$$

By (2.1), (2.2) and (2.3), we have

$$\begin{split} \mu_{n} &\leqslant n^{-1} \|\varphi^{2}V_{n}''f\|_{\gamma} + n^{-1} \|\varphi^{2}V_{n}''f\|_{\gamma} \\ &\leqslant n^{-1} \|\varphi^{2}V_{n}''V_{k}f\|_{\gamma} + n^{-1} \|\varphi^{2}V_{n}''(V_{k}f - f)\|_{\gamma} + n^{-1}M_{0} \|f\|_{\gamma} \\ &\leqslant n^{-1} \left(\frac{n+1}{n} \|\varphi^{2}V_{k}''f\|_{\gamma} + 24n^{\gamma/2-1} \|\varphi^{2}V_{k}''f\|_{2}\right) \\ &+ M_{0} \|V_{k}f - f\|_{\gamma} + M_{0}n^{-1} \|f\|_{\gamma} \\ &\leqslant n^{-1} \|\varphi^{2}V_{k}''f\|_{\gamma} + n^{-2} \|\varphi^{2}V_{k}''f\|_{\gamma} + 24n^{\gamma/2-2} \|\varphi^{2}V_{k}''f\|_{2} \\ &+ M_{0}(\|V_{k}f - f\|_{\gamma} + n^{-1} \|f\|_{\gamma}) \\ &\leqslant n^{-1} \|\varphi^{2}(V_{k}'' - V_{1}'') f\|_{\gamma} + n^{-1} \|\varphi^{2}V_{1}''f\|_{\gamma} + \frac{M_{0}k}{n^{2}} \|f\|_{\gamma} \\ &+ 24n^{\gamma/2-2} \|\varphi^{2}(V_{k}'' - V_{1}'') f\|_{2} + 24n^{\gamma/2-2} \|\varphi^{2}V_{1}''f\|_{2} \\ &+ M_{0}(\|V_{k}f - f\|_{\gamma} + n^{-1} \|f\|_{\gamma}) \\ &\leqslant n^{-1} \|\varphi^{2}(V_{k}'' - V_{1}'') f\|_{\gamma} + 24n^{\gamma/2-2} \|\varphi^{2}(V_{k}'' - V_{1}'') f\|_{2} \\ &+ 26M_{0}n^{-1} \|f\|_{\gamma} + M_{0}(\|V_{k}f - f\|_{\gamma} + n^{-1} \|f\|_{\gamma}) \\ &\leqslant \frac{k}{n} \mu_{k} + \left(\frac{k}{n}\right)^{2-\gamma/2} v_{k} + 27M_{0}(\|V_{k}f - f\|_{\gamma} + n^{-1} \|f\|_{\gamma}) \\ &\leqslant \frac{k}{n} \mu_{k} + v_{k} + \psi_{k}. \end{split}$$

Hence, (2.14) holds for r = 1. On the other hand, by (2.2) and (2.4),

$$\begin{split} & v_n \leqslant 24n^{\gamma/2-2} \|\varphi^2 V_n''f\|_2 + 24n^{\gamma/2-2} \|\varphi^2 V_1''f\|_2 \\ & \leqslant 24n^{\gamma/2-2} \|\varphi^2 V_n''V_k f\|_2 + 24n^{\gamma/2-2} \|\varphi^2 V_n''(V_k f - f)\|_2 + 24M_0 n^{-1} \|f\|_{\gamma} \\ & \leqslant 24n^{\gamma/2-2} \frac{n+1}{n} \|\varphi^2 V_k''f\|_2 + 24M_0 \|V_k f - f\|_{\gamma} + 24M_0 n^{-1} \|f\|_{\gamma} \\ & \leqslant 24n^{\gamma/2-2} \|\varphi^2 V_k''f\|_2 + 24n^{\gamma/2-2}n^{-1} \|\varphi^2 V_k''f\|_2 + 24M_0 (\|V_k f - f\|_{\gamma} + n^{-1} \|f\|_{\gamma}) \\ & \leqslant 24n^{\gamma/2-2} \|\varphi^2 (V_k'' - V_1'') f\|_2 + 24n^{\gamma/2-2} \|\varphi^2 V_1''f\|_2 \\ & + 24M_0 \left(\frac{k}{n}\right)^{2-\gamma/2} n^{-1} \|f\|_{\gamma} + 24M_0 (\|V_k f - f\|_{\gamma} + n^{-1} \|f\|_{\gamma}) \\ & \leqslant 24n^{\gamma/2-2} \|\varphi^2 (V_k'' - V_1'') f\|_2 + 48M_0 n^{-1} \|f\|_{\gamma} + 24M_0 (\|V_k f - f\|_{\gamma} + n^{-1} \|f\|_{\gamma}) \\ & \leqslant (\frac{k}{n})^{2-\gamma/2} v_k + \psi_k, \end{split}$$

and (2.15) holds for $s = 2 - \gamma/2$. Therefore Lemma 2.3 implies

$$\begin{split} \|\varphi^{2}(V_{n}''-V_{1}'') f\|_{\gamma} &\leq M_{1} \sum_{k=1}^{n} \left(\|V_{k} f - f\|_{\gamma} + n^{-1} \|f\|_{\gamma} \right) \\ &= M_{1} \left(\sum_{k=1}^{n} \|V_{k} f - f\|_{\gamma} + \|f\|_{\gamma} \right). \end{split}$$

Therefore,

$$\begin{split} \|\varphi^2 V_n'' f\|_{\gamma} &\leq M_1 \left(\sum_{k=1}^n \|V_k f - f\|_{\gamma} + \|f\|_{\gamma} \right) + M_0 \|f\|_{\gamma} \\ &= M \left(\sum_{k=1}^n \|V_k f - f\|_{\gamma} + \|f\|_{\gamma} \right). \end{split}$$

Concerning the case $\gamma = 2$, we apply Lemma 2.2 with p = 1 to $(1 \le m \le n)$

 $\sigma_m = m^{-1} \| \varphi^2(V_m'' - V_1'') f \|_2 \quad \text{and} \quad \tau_m = 3M_0(\|V_m f - f\|_2 + n^{-1} \|f\|_2),$

which implies (2.17) analogously (cf (2.2), (2.4)).

To establish our main theorem, we need the following lemma.

LEMMA 2.5. If $0 \le \gamma \le 2$, t > 0, $x \ge t$ and either of

(i)
$$0 < t < 1$$
, (ii) $x \ge 2t$

is satisfied, then we have

$$\int_{-t/2}^{t/2} \int_{-t/2}^{t/2} \varphi^{\gamma}(x+u+v) \, du \, dv \leq M t^2 \varphi^{-\gamma}(x).$$

Proof. If condition (i) is satisfied, then for $\gamma = 2$, it is known (cf. [1]). For $0 \le \gamma < 2$, we use the Hölder inequality

$$\begin{split} \int_{-t/2}^{t/2} \int_{-t/2}^{t/2} \varphi^{-\gamma}(x+u+v) \, du \, dv \\ &\leqslant \left(\int_{-t/2}^{t/2} \int_{-t/2}^{t/2} \varphi^{-2}(x+u+v) \, du \, dv \right)^{\gamma/2} \left(\int_{-t/2}^{t/2} \int_{-t/2}^{t/2} du \, dv \right)^{1-\gamma/2} \\ &\leqslant M(t^2 \varphi^{-2}(x))^{\gamma/2} \, t^{2(1-\gamma/2)} \\ &\leqslant Mt^2 \varphi^{-\gamma}(x). \end{split}$$

If condition (ii) is satisfied, then $x - t \ge \frac{1}{2}x$. Therefore,

$$\int_{-t/2}^{t/2} \int_{-t/2}^{t/2} \varphi^{-\gamma}(x+u+v) \, du \, dv \leq t^2 \varphi^{-\gamma}(x-t) \leq t^2 \varphi^{-\gamma}\left(\frac{x}{2}\right) \leq M t^2 \varphi^{-\gamma}(x).$$

3. MAIN THEOREMS AND COROLLARIES

Now, we prove the main theorems.

THEOREM 3.1. Suppose $f \in C^0_{\lambda, \alpha, \beta}$. Then one has

$$K_{\lambda}^{\alpha,\beta}\left(f,\frac{1}{n}\right) \leqslant Cn^{-1}\left(\sum_{k=1}^{n} \|V_{k}f - f\|_{0}^{*} + \|f\|_{0}^{*}\right).$$
(3.1)

Proof. For $n \ge 2$, there exists $l \in N$, such that $n/2 \le l \le n$, and

$$||V_l f - f||_0^* \leq ||V_k f - f||_0^* \left(\frac{n}{2} \leq k \leq n\right).$$

On the other hand, Lemma 2.4 implies (where we set $\gamma = (1 - \lambda) \alpha + \beta$)

$$\|V_n''f\|_2^* \leq M\left(\sum_{k=1}^n \|V_k f - f\|_0^* + \|f\|_0^*\right).$$

Therefore, using the definition of $K_{\lambda}^{\alpha,\beta}(f,\frac{1}{n})$, we have

$$\begin{split} K_{\lambda}^{\alpha,\,\beta}\left(f,\frac{1}{n}\right) &\leqslant \|V_{l}f-f\|_{0}^{*}+\frac{1}{n}\,\|V_{l}f\|_{2}^{*} \\ &\leqslant \frac{2}{n}\,\sum_{k=n/2}^{n}\,\|V_{k}f-f\|_{0}^{*}+\frac{1}{n}\,M\left(\sum_{k=1}^{l}\,\|V_{k}f-f\|_{0}^{*}+\|f\|_{0}^{*}\right) \\ &\leqslant \frac{2}{n}\left(\sum_{k=1}^{n}\,\|V_{k}f-f\|_{0}^{*}+\|f\|_{0}^{*}\right)+\frac{1}{n}\,M\left(\sum_{k=1}^{n}\,\|V_{k}f-f\|_{0}^{*}+\|f\|_{0}^{*}\right) \\ &\leqslant C\,\frac{1}{n}\left(\sum_{k=1}^{n}\,\|V_{k}f-f\|_{0}^{*}+\|f\|_{0}^{*}+\|f\|_{0}^{*}\right). \end{split}$$

The proof is complete.

Remark. Wickeren's Proof in [7] is followed for Theorem 3.1, and from (3.1) we can deduce the following theorem.

THEOREM 3.2. Suppose $f \in C^0_{\lambda, \alpha, \beta}$. Then one has

$$\omega_{\varphi^{\lambda}}^{2}\left(f,\frac{\varphi^{1-\lambda}(x)}{\sqrt{n}}\right)_{\alpha,\beta} \leq C \frac{1}{n} \left(\sum_{k=1}^{n} \|V_{k}f - f\|_{0}^{*} + \|f\|_{0}^{*}\right).$$
(3.2)

Proof. According to the definition of $K_{\lambda}^{\alpha,\beta}(f,\frac{1}{n})$, there exists $g \in C_{\lambda,\alpha,\beta}^2$ such that

$$\|f - g\|_{0}^{*} + \frac{1}{n} \|g\|_{2}^{*} \leq 2K_{\lambda}^{\alpha, \beta} \left(f, \frac{1}{n}\right).$$
(3.3)

On the other hand,

$$|\mathcal{\Delta}^{2}_{h\varphi^{\lambda}}f(x)| \leq |\mathcal{\Delta}^{2}_{h\varphi^{\lambda}}(f-g)(x)| + |\mathcal{\Delta}^{2}_{h\varphi^{\lambda}}g(x)|.$$
(3.4)

For the first term of (3.4), since $\varphi^{\alpha(1-\lambda)+\beta}(x)$ is a monotone increasing function, and $x \ge h\varphi^{\lambda}(x)$,

$$\begin{aligned} |\Delta_{h\varphi^{\lambda}}^{2}(f-g)(x)| &\leq \|f-g\|_{0}^{*} \left(\varphi^{\alpha(1-\lambda)+\beta}(x+h\varphi^{\lambda}(x))+2\varphi^{\alpha(1-\lambda)+\beta}(x)\right.\\ &+\varphi^{\alpha(1-\lambda)+\beta}(x-h\varphi^{\lambda}(x))\\ &\leq \|f-g\|_{0}^{*} \left(\varphi^{\alpha(1-\lambda)+\beta}(2x)+3\varphi^{\alpha(1-\lambda)+\beta}(x)\right)\\ &\leq 7\varphi^{\alpha(1-\lambda)+\beta}(x) \|f-g\|_{0}^{*}. \end{aligned}$$

For the second term of (3.4), we have

$$\begin{aligned} |\mathcal{\Delta}_{h\varphi^{\lambda}(x)}^{2}g(x)| &= \left| \int_{-h\varphi^{\lambda}(x)/2}^{h\varphi^{\lambda}(x)/2} \int_{-h\varphi^{\lambda}(x)/2}^{h\varphi^{\lambda}(x)/2} g''(x+\mu+\nu) \, d\mu \, d\nu \right| \\ &\leq \|g\|_{2}^{*} \cdot \left| \int_{-h\varphi^{\lambda}(x)/2}^{h\varphi^{\lambda}(x)/2} \int_{-h\varphi^{\lambda}(x)/2}^{h\varphi^{\lambda}(x)/2} \varphi^{-2+(1-\lambda)\,\alpha+\beta}(x+\mu+\nu) \, d\mu \, d\nu \right|. \end{aligned}$$

Set $t = h\varphi^{\lambda}(x)$. Since $x \ge h\varphi^{\lambda}(x)$, if x < 1, one has 0 < t < 1, which satisfies (i) of Lemma 2.5.

If $x \ge 1$, let $h \le \varphi^{1-\lambda}(x)/\sqrt{n}$ $(n \ge 8)$. Then

$$t \leq \frac{\varphi^{1-\lambda}(x)}{\sqrt{n}} \varphi^{\lambda}(x) = \frac{\varphi(x)}{\sqrt{n}} \leq \sqrt{\frac{2}{n}} x \leq \frac{x}{2},$$

which satisfies (ii) of Lemma 2.5. Therefore, suppose $h \leq \varphi^{1-\lambda}(x)/$ \sqrt{n} ($n \ge 8$). By Lemma 2.5, we have

$$\int_{-h\varphi^{\lambda}(x)/2}^{h\varphi^{\lambda}(x)/2} \int_{-h\varphi^{\lambda}(x)/2}^{h\varphi^{\lambda}(x)/2} \varphi^{-2+(1-\lambda)\alpha+\beta}(x+\mu+\nu) \, d\mu \, d\nu \leq M(h\varphi^{\lambda}(x))^2 \, \varphi^{-2+(1-\lambda)\alpha+\beta}(x)$$

Thus, if $h \leq \varphi^{1-\lambda}(x)/\sqrt{n}$ $(n \geq 8)$, we have

$$|\varDelta_{\varphi^{\lambda}}^{2}f(x)| \leq M_{1}\varphi^{\alpha(1-\lambda)+\beta}(x) \left(\|f-g\|_{o}^{*} + \frac{1}{n}\|g\|_{2}^{*} \right).$$

Therefore,

$$\omega_{\varphi^{\lambda}}^{2}\left(f,\frac{\varphi^{1-\lambda}(x)}{\sqrt{n}}\right)_{\alpha,\beta} \leq 2M_{1}K_{\lambda}^{\alpha,\beta}\left(f,\frac{1}{n}\right) \leq C\frac{1}{n}\left(\sum_{k=1}^{n}\|V_{k}f-f\|_{0}^{*}+\|f\|_{0}^{*}\right).$$

However, if $n \leq 8$, the result is obvious. This completes the proof of this theorem.

Now, we give some corollaries.

COROLLARY 3.1. Let
$$\lambda = 1, 0 \leq \beta \leq 2$$
, then for $f \in C_{\beta}$

$$\omega_{\varphi}^{2}\left(f,\frac{1}{\sqrt{n}}\right)_{\beta} \leq C \frac{1}{n} \left(\sum_{k=1}^{n} \|\varphi^{-\beta}(V_{k}f-f)\| + \|\varphi^{-\beta}f\|\right).$$

This result corresponds to the result of [7] with $\beta = 0$ which is the result of Theorem 9.3.6 in [4] for s = 1.

COROLLARY 3.2. Let
$$\lambda = 0, 0 \leq \alpha + \beta = \gamma \leq 2$$
. Then for $f \in C_{\gamma}$

$$\omega^{2}\left(f,\frac{\varphi(x)}{\sqrt{n}}\right)_{\gamma} \leq C \frac{1}{n} \left(\sum_{k=1}^{n} \|\varphi^{-\gamma}(V_{k}f-f)\| + \|\varphi^{-\gamma}f\|\right).$$

This is a result for the classical modulus.

COROLLARY 3.3. For $0 < \alpha < 2, 0 \le \beta \le 2$, we have the following inverse results

$$|(V_n f - f)(x)| = O\left(\left(\frac{\varphi(x)}{\sqrt{n}}\right)^{\alpha}\right) \Rightarrow \omega^2(f, t) = O(t^{\alpha}),$$
(3.5)

$$|(V_n f - f)(x)| = O\left(\left(\frac{1}{\sqrt{n}}\right)^{\alpha}\right) \Rightarrow \omega_{\varphi}^2(f, t) = O(t^{\alpha}), \tag{3.6}$$

$$\varphi^{-\beta}(x) |(V_n f - f)(x)| \leq M n^{-\alpha/2}$$

$$\Rightarrow \varphi^{-\beta}(x) |f(x+t) - 2f(x) + f(x-t)| \leq M \frac{t^{\alpha}}{\varphi^{\alpha}(x)}, \qquad (3.7)$$

$$|(V_n f - f)(x)| = O\left(\left(\frac{\varphi^{1-\lambda}(x)}{\sqrt{n}}\right)^{\alpha}\right) \Rightarrow \omega_{\varphi^{\lambda}}^2(f, t) = O(t^{\alpha}).$$
(3.8)

Proof. Since the proof of (3.5), (3.6), and (3.7) are similar, here we only prove (3.7).

Applying Corollary 3.2, let $\gamma = \beta$, $\varphi(x)/\sqrt{n+1} < t \le \varphi(x)/\sqrt{n}$. Then

$$\begin{split} \varphi^{-\beta}(x) & |f(x+t) - 2f(x) + f(x-t)| \\ & \leqslant \omega^2 (f,t)_\beta \leqslant \omega^2 \left(f, \frac{\varphi(x)}{\sqrt{n}} \right)_\beta \\ & \leqslant C \left(n^{-1} \sum_{k=1}^n \| \varphi^{-\beta} (V_k f - f) \| + (n^{-1} \| \varphi^{-\beta} f \| \right) \\ & \leqslant C_1 n^{-1} \sum_{k=1}^n k^{-\alpha/2} + C_2 n^{-1} \\ & \leqslant C_3 n^{-\alpha/2} \leqslant M \frac{t^{\alpha}}{\varphi^{\alpha}(x)}. \end{split}$$

Last, we prove (3.8). In Theorem 3.2, let $\beta = 0$; thus

$$\|V_n f - f\|_0^* = \sup_{x} \{\varphi^{(\lambda - 1)\alpha}(x) | (V_n f - f)(x)| \}$$

$$\leq M n^{-\alpha/2}.$$

Let $\varphi^{1-\lambda}(x)/\sqrt{n+1} < t \le \varphi^{1-\lambda}(x)/\sqrt{n}$. Then $(h \le t)$

$$\varphi^{\alpha(\lambda-1)}(x) |f(x+h\varphi^{\lambda}(x))-2f(x)+f(x-h\varphi^{\lambda}(x))|$$

$$\leq Cn^{-1}\left(\sum_{k=1}^{n} Mk^{-\alpha/2} + ||f||_{0}^{*}\right)$$

$$\leq M_{1}n^{-\alpha/2}.$$

Therefore,

$$|\varDelta_{h\varphi^{\lambda}}^{2}f(x)| \leq M_{1}\left(\frac{\varphi^{1-\lambda}(x)}{\sqrt{n}}\right)^{\alpha} \leq M_{2}t^{\alpha}.$$

This is

$$\omega_{\varphi^{\lambda}}^{2}(f,t) \leq M_{2}t^{\alpha}.$$

The proof is complete.

Remark. (1) Relation (3.8) is the inverse theorem of (1.6).

(2) Since $V_n(f, x)$ preserves constants, the condition f(0) = 0 can be omitted in the results.

ACKNOWLEDGMENTS

The authors express their sincere gratitude to Professor Z. Ditzian and the referee for their critical reading of the manuscript and many valuable suggestions.

REFERENCES

- 1. W. Chen, "Approximation Theory of Operators," Xiamen Univ. Publishing House, 1989. [In Chinese]
- Z. Ditzian, Direct estimate for Bernstein polynomials, J. Approx. Theory 79 (1994), 165–166.
- 3. Z. Ditzian and K. Ivanov, Strong converse inequalities, J. Anal. Math. 61 (1993), 61-111.
- 4. Z. Ditzian and V. Totik, "Modulus of Smoothness," Springer-Verlag, New York/Berlin, 1987.
- S. Guo and Y. Ge, Strong converse inequality on simultaneous approximation by Baskakov–Durrmeyer type operators, *Chinese J. Contemp. Math.* 18, No. 4 (1997), 383–394.
- 6. V. Totik, Strong converse inequalities, J. Approx. Theory 76 (1994), 369-375.
- E. Van Wickeren, Stechkin–Marchaud-type inequalities in connection with Bernstein polynomials, *Constr. Approx.* 2 (1986), 331–337.